How to increase turnout in low-salience elections

Quasi-experimental evidence on the effect of concurrent second-order elections on political participation. *

Arndt Leininger † Lukas Rudolph ‡ Steffen Zittlau §

May 5, 2016

Abstract

Voter turnout in second-order elections is on a dramatic decline in many modern democracies. This article investigates how electoral participation can be substantially increased by holding multiple of these less important elections concurrently. Leading to a relative decrease in voting costs, concurrent elections theoretically have economies of scale to the individual voter and thus should see turnout levels larger than those obtained in any stand-alone election. Leveraging as-if-random variation of local election timing in Germany, we estimate the causal effect of concurrent mayoral elections on European Election turnout at around ten percentage points. Exploiting variation in treatment intensity, we show that the magnitude of the concurrency effect is contingent upon district size and the competitiveness of the local race.

* Authors’ note: Tarik Abou-Chadi, Felix Arnold, Christopher Gandrud, Thomas Gschwend, Daniel Stegmüller, Markus Tepe, Natascha Neudorfer, Paul Thurner, Robert Schmidt, Christian Traxler, panel participants at the 2015 annual meeting of the Electoral Studies Working Group of the German Political Science Association, as well as colloquium participants at the Geschwister Scholl Institute of Political Science, LMU Munich, the University of Mannheim, the Hertie School of Governance, Berlin, and the Berlin Graduate School of Social Sciences provided very helpful comments and suggestions. We thank the Office of the Elections Administrator in Lower Saxony, the Ministry of the Interior, Lower Saxony (esp. Gerhard Fischer and Hiltrud Scheferling) as well as the Statistical Office of Lower Saxony (esp. Michael Kölbl and Ralf Martins) for providing data and background on election timing in Lower Saxony. All remaining errors are of course our own.

†Hertie School of Governance, a.leininger@phd.hertie-school.org (corresponding author)
‡LMU Munich, lukas.rudolph@gsi.uni-muenchen.de
§University of Mannheim, zittlau@uni-mannheim.de
1 Introduction

When faced with low levels of political participation, the legitimacy of political institutions is regularly questioned (Scully, Jones, and Trystan, 2004). Low turnout rates are considered as a ‘serious democratic problem’ by politicians and political scientists (Lijphart, 1997) alike. Especially second-order elections (Reif and Schmitt, 1980), elections which do not serve the function of electing a head of government, have seen a dramatic decline in turnout in recent decades in many modern democracies. For example, the overall turnout rate for European Parliament elections (EE) decreased from 62% in 1979 to 43% in 2014, with levels as low as 13% in some member states – despite an increase in the formal powers of the institution.

Such low-turnout elections, in which only a minority of voters participate, are also less likely to lead to electoral outcomes that are representative of the political preferences of the entire electorate. While some studies report negligible effects of turnout variation on electoral outcomes (Ferwerda, 2014; Lutz and Marsh, 2007), large shifts have been noted in various contexts (Artés, 2014; Bechtel, Hangartner, and Schmid, 2015; Finseraas and Vernby, 2014). As Lijphart (1997) argued, it is thus important to design institutions in a way that turnout levels are maximized in order to guarantee equal influence of all citizens – he therefore calls for a combination of second-order with first-order elections. Electoral research has consistently found a substantial increase in turnout (see for an overview Geys, 2006), as turnout for the less important election increases to the level of the concurrent first-order elections. But beyond that, there is surprisingly little evidence on the electoral effects of concurrency.

This paper systematically analyzes the turnout effect of concurrent second-order elections (CSOE). We argue that theoretically combining multiple second-order elections should also lead to a substantial increase in turnout, beyond the levels obtained in any counterfactual stand-alone election. Our focus is on a particularly interesting case of concurrency: How is political participation influenced, if the elections for the two most distant levels of government, European Parliamentary elections (EE) and local elections, are held on the same day? We bring a rigorous research design to bear on this question by exploiting partially overlapping electoral cycles as a quasi-experimental treatment condition. In the German state of Lower Saxony we find a closest-to-ideal case of study, where the 2014 European Parliamentary election was held concurrently with local mayoral elections in some municipalities, and not in others.

We find that the concurrency effect of local elections on EE turnout is substantial, on average around 10 percentage points. Furthermore, we show that the turnout effect depends on the nature of the local mayoral election that the EE is combined with. For municipalities that receive a more intense treatment, i.e. by holding a competitive mayoral election in a small village, we find EE turnout to increase by 18 percentage points. Less attractive mayoral elections, such as uncontested races in larger districts, increase EE turnout only marginally. We also provide evidence for the external validity of our causal estimates by analyzing state-level EE turnout in Germany between 1979
and 2014. We find that EE turnout in states that held concurrent state-wide local legislative elections is very consistently over 10 percentage points higher. Finally, we provide indicative evidence that the increase in turnout likely stems from two different electorates that are drawn to the polls, one primarily interested in (singular) local and one interested in (singular) EE elections.

Our findings add to the literature on the relevance of election timing effects. While a positive effect of concurrency has been noted in the past, we are able to address endogeneity concerns that potentially bias results found so far in the literature (e.g. Mattila, 2003; Schakel and Dandoy, 2014) because the timing of concurrent elections is prone to be strategic (Meredith, 2009). In combination with evidence provided by Fauvelle-Aymar and François (2015) on French regional elections and Schmid (2015) on cantonal elections and concurrent referenda in Switzerland, our results indicate that CSOE should ‘work’ in a wide variety of contexts.

Our contribution does not only inform the narrow field of electoral timing research, but also adds to the broader turnout literature that is concerned with the effect of voting costs (Haspel and Knotts, 2005; Hershey, 2009; Hodler, Luechinger, and Stutzer, 2015; Rallings, Thrasher, and Borisyuk, 2003) and voter pivotality and electoral competitiveness (Cox and Munger, 1989; Endersby, Galatas, and Rackaway, 2002; Kirchgässner and Meyer zu Himmern, 1995; Shachar and Nalebuff, 1999) on turnout. Furthermore, our finding have direct relevance for the ongoing debate on policy measures to increase turnout. Combining multiple “less important” elections is a simple, yet very effective tool to increases turnout substantially in either of them.

2 Why do concurrent elections increase turnout?

2.1 What we know so far

It is a well-established finding of electoral research that turnout in less important, second-order elections increases when these are combined with first-order elections. Evidence stems from a wide range of elections (for an overview see Geys, 2006). In the United States, turnout in US gubernatorial elections increases if they are held together with presidential elections (Boyd, 1989). In European countries, turnout in local or regional election increases if these elections are combined with general national elections (Schakel and Dandoy, 2014; Vetter, 2015). Much less is known about the turnout effect of combining two second-order elections, where turnout is relatively low in both instances. At the regional (Mattila, 2003; Schakel and Dandoy, 2014) and municipal level (Rallings and Thrasher, 2005; Vetter, 2015) a concurrency effect for second-order elections has been noted.

However, much of the literature on the turnout effect of simultaneous elections lacks analytical rigor. First of all, that concurrency increases turnout is all too often treated as a self-evident truth. There is no well-established explicit theoretical model of turnout in multiple elections. Accordingly, the empirical strategy employed by most of the
contributions is limited to multivariate analyses of turnout levels, where concurrency is treated as “just another dummy variable”. Confounding factors, such as selection into concurrency, are barely addressed. Reported estimates are therefore prone to omitted variable bias and specification issues, especially in cross-national research.

To the best of our knowledge, there are only three articles that have addressed the turnout effect of concurrency with a causal identification strategy. Fowler (2015) analyzes the effect of concurrent presidential elections on turnout in gubernatorial elections arguing that their overlap is quasi-random. He finds a sizable concurrency effect of 17 percentage points; but as presidential elections are first-order elections such a large effect is to be expected.¹ Most relevant for our research question is the contribution of Fauvelle-Aymar and François (2015), on participation in French regional elections. These take place every six years. Elections in the departments, a tier of government below the region, take place every 3 years in half of the cantons - similar to the electoral calendar of the US House of Representatives. The assignment of cantons to the two groups is random. Conducting difference-in-means tests, Fauvelle-Aymar and Francois document a concurrency effect of departmental elections of around four percentage points. Lastly, a working paper by Schmid (2015) analyzes state-level elections in Switzerland with concurrent federal referendums. Schmid argues that strategic scheduling is unlikely and thus referendum turnout exogenous to cantonal election timing. Using individual level and aggregate data from voting records, he finds a substantial concurrency effect on turnout of around 8.5 percentage points.

2.2 The Calculus of Voting under Concurrency

We extend the canonical Riker and Ordeshook (1968) model to analyze the turnout effect of simultaneous elections. The Riker-Ordeshook model conceptualizes individual turnout decisions in a singular election as a cost-benefit calculus of the form $R = pB + D - C$. R is the individual’s expected benefit from turning out, which depends on the benefit derived from the election’s result (B), multiplied by the probability of being the decisive voter (p). An individual gains additional satisfaction from fulfilling her civic duty or taste for voting (D). Finally, expected benefit decreases with participation costs (C). If two elections are held on the same day, the model can be extended by separating the terms into election-specific components. This amounts to the idea that voters gain benefits and incur costs that are specific to casting a vote in the European election (subscript e), and specific to casting a vote in the local election (subscript l).

$$R = p_e B_e + D_e + p_l B_l + D_l - C ; \quad C = F + v_e + v_l$$

Costs C can be additionally divided into fixed costs F (costs that are unaffected by the additional election) and variable costs v (costs that increase with the increasing number of elections) (see also Fauvelle-Aymar and François, 2015). F are primarily monetary costs of transportation and opportunity costs of the time spent during trans-

¹Fowler’s main interest is in estimating the political preferences of marginal voters. Towards this end, in a second-step, he uses concurrency as an instrument for turnout to estimate a turnout effect on electoral results finding Democrats to profit from higher turnout.
Variable costs are costs of collecting information about the specific election, and the time costs of filling out election-specific ballots. Since fixed costs are only incurred once for taking part in two elections, participation in concurrent elections has ‘economies of scale’ to the individual voter (Aldrich, 1993, p. 261).

Having established the notation, we can define the circumstances under which concurrency increases turnout, compared to a singular European election. Turnout in an EE increases if the benefits of the additional local election are larger than its additional variable costs, i.e. if $p_l B_l + D_l > v_l$. Moreover, if voting is not compulsory in any of the elections, there is a mechanism that assures that voters can not be deterred by additional elections, i.e. that $p_l B_l + D_l - v_l \geq 0$. Voters whose additional variable costs are larger than their additional benefit can simply avoid incurring additional costs by not casting a vote in the additional election. This is done by casting a blank ticket in the local election, or invalidating the local ballot. Another, and much more common strategy to deal with high election-specific information costs are informational shortcuts and heuristics, such as party identification or national-level party preferences. This has been discussed in the context of cross-ballot and cross-election contamination or interaction effects (Ferejohn and Calvert, 1984; Ferrara, Herron, and Nishikawa, 2005; Herron and Nishikawa, 2000). No matter whether voters cast invalid or ‘contaminated’ votes to deal with high information costs, these ‘opt-out’ options assure that no rational voter can be deterred from participation by the fact that an additional election takes place. In turn, this means that turnout in concurrent elections should never fall below (counterfactual) turnout in singular elections.

Election-specific benefits and costs of course vary greatly between voters. While some voters are primarily motivated to participate in the European election, others see more benefit in participating in the local election. Based on the different sum of benefits and cost perceptions, four representative voter ideal types can be identified, that are relevant for an analysis of turnout in concurrent second-order elections (see Figure 1). For the sake of illustration, consider voters to turn out based on the summary benefits, relative to a constant cost threshold. Voter A will vote in the European elections irrespective of whether there is a concurrent local election but will not vote in a singular local election. Voter B does not turn out, even in concurrent elections, since the sum of benefits does not outweigh costs. Voter C would not participate in any singular EE, but will in concurrent elections, as the benefit derived from voting in the local election pushes her above the participation threshold. Voter D assigns a benefit high enough to vote in local elections, irrespective of European elections, but would not participate in a singular EE.

As outlined above, the conditions under which concurrent local elections do not increase turnout are very strict. First of all, if voters follow a rational calculus, the

2Postal votes exhibit similar fixed costs for voters in Germany, as only one application is required to obtain both ballot papers, and voters can use the same envelope to send back both ballots.
3 The share of blank or invalid votes is shown to increase in concurrent elections (Schmid, 2015).
4 Absent of irrational, psychological costs of casting a blank or invalid ticket, or casting an informed vote.
5 There is also a fifth voter ideal type, a habitual voter who will always vote in any of the two elections, and thereby plays no role in the CSOE effect.
likelihood of turnout can not be decreased for any voter by the fact that another election takes place on the same day. Secondly, the electorate needs to be composed only of specific voter types for concurrency to not have a positive turnout effect. Only if the electorate consists exclusively of voters of type A and B will concurrent elections not have an effect on turnout rates in European elections. As these conditions are very unlikely to be fulfilled in any real-world election, we should expect turnout to always increase if additional elections are held on the same day, and if the additional elections are not negligibly important to voters. In our case, since voters assign some notable importance to the office of mayor, we expect a substantial increase in EE participation due to simultaneously held local elections.

2.3 District-level variation

Apart from individual-level variations in the turnout calculus, there is also systematic variation between local units - due to the specific characteristics of the local elections. While all voters vote in the same nation-wide electoral district in the European election, voters from different localities experience different electoral circumstances in the local election. Thus, we expect the specific features of the local election to have a systematic influence on the cost-benefit calculus of voters, and in turn the turnout effect of concurrency. This can best be understood as variation in the “attractiveness”, or intensity, of local races.

The Riker-Ordershhook model indicates the election-level characteristics that deter-
mine the treatment intensity. First of all, the probability of being the decisive voter in the local election (p_l) is a function of the competitiveness of the local race, and the number of eligible voters in the local district. With increasing competitiveness and decreasing size of the municipality, the benefits of participation in the local election increase, pushing more and more citizens over the participation threshold that would not have voted in a singular EE election (voter types C and D).

Apart from increasing treatment intensity by modulation of the p_l term, we expect municipality size to also have an effect on the non-instrumental benefit, the D_l term. Citizens in smaller municipalities participate more because they have a greater sense of community and political effectiveness than citizens in larger municipalities (Wright, Verba, and Nie, 1975). This sense of community should primarily apply to elections of local offices (D_l), and not at the European level (D_e). Consequently, in small municipalities relatively more voters of type C and D will exist than in larger municipalities. We therefore expect the concurrency effect on EE turnout to decrease in the size of the municipality. This finding should hold irrespective of the competitiveness of the local race – in small municipalities, we expect to find a concurrency effect even for uncontested local races, where the p_l term should practically play no role.

3 Research design

Election timing has been shown to depend on strategic considerations of policy makers such as future economic prospects or anticipated feelings in the electorate (Kayser, 2005; Lupia and Strom, 1995; Smith, 2003). This could well imply that unobserved confounders correlate both with the occurrence of concurrent elections and counterfactual turnout levels. In this section, we discuss our identification strategy to deal with these methodological issues and why we think that our research design provides causal estimates.

We exploit a quasi-experimental situation in the German federal state of Lower Saxony, where term length changes for mayors were likely unrelated to turnout for the European Parliament Election. Additionally, we draw on a Difference-in-Differences design (DiD) to reduce necessary assumptions. We assess the credibility of our design with a number of tests of the identifying assumptions. As dependent variable, we use the difference of EE turnout to turnout in the preceding General Election (GE) – contrary to using the difference to preceding EE turnout, which is the more standard specification of DiD.

We choose to difference EE turnout to the preceding General Election for several reasons. First of all, following second-order theory, the frame of reference for second-
order elections is the first-order arena: “the campaign and results of each and every type of SOE are more or less heavily influenced by the political constellation of the dominant political arena within the system, the first order political arena” (Reif, 1997, p. 117). Secondly, we also see a number of methodological advantages. GE turnout can be viewed as the ‘maximum turnout potential’ for second-order elections. GE then are always in an untreated ‘control’ state as concurrent second-order election do not change GE, i.e. first-order, turnout.\(^7\) We also opt for GE because they are temporally closer to any given EE than the preceding EE (see Fig. 2).\(^8\) Another advantage of using the the preceding GE is that we’re able to use the first election in our time series which in a classical DID setting would drop out because there is no first difference for it. We use DiD because it differences out all unobserved time-constant confounders (Kodzi, 2010). Our strategy allows us to keep the temporal distance low, which makes it more likely that necessary assumptions are met. Since the electoral cycle for EE is 5 years and that for GE elections is 4 years, there always is a federal election that is temporally closer to a given EE than the preceding EE.

In the case under investigation, the May 2014 EE in the German state of Lower Saxony, the preceding GE was held in September 2013 (highlighted in Fig. 2). We also estimate a standard fixed effects model with turnout level in EE as dependent variable. In the Appendix we provide the results to alternative specifications. Using the differences to the preceding EE as the dependent variable in our models presented in sections 4 (on Lower Saxony) and 5 (on generalizing effects), our results remain substantively unchanged.\(^9\)

![Figure 2: Timeline of EE elections (EE) and general elections (GE) indicating which GE serves as baseline - ‘maximum turnout potential’ - for which EE election.](image)

In a potential outcomes framework following the Neyman-Rubin model (Rubin, 1974), our quantity of interest is the average treatment effect (ATE) for concurrent elections for our sample. ATE is the average difference between the difference to turnout potential under treatment and control condition for each locality \(i\) and each time period \(t\).\(^{10}\) As we do not observe counterfactual outcomes directly, our estimation strategy builds on the core assumption that absent local elections, our ‘treated’, i.e. concurrent \((D = 1)\), localities would experience similar outcomes as ‘untreated’, i.e. stand-alone

\(^{7}\)We test this empirically: Some states held state-level elections or state-wide local election concurrently with GE. Concurrency has no effect on the turnout in a GE (see table 1 of the appendix).

\(^{8}\)The temporal distance between two EE elections is 5 years while the average temporal distance between an EE and the preceding GE is only 2.1, the minimum distance being one year and the maximum distance, because of the shorter legislative periods at the German national leve, four years.

\(^{9}\)See Tables 6, Lower Saxony, and 8, federal states, in the Appendix.

\(^{10}\)\(\beta = E((Y_{i,t,EE} - Y_{i,t,GE}) - (Y_{i,t,EE} - E(Y_{i,t,GE}))(D_{it} = 1))\)
As campaigning for EEs takes place on the national and European level, exceeding state and municipality boundaries where our treatment varies, this assumption is at first sight plausible. Still, we have to ensure that the mechanism that assigns treatment and control locations is unrelated to turnout. For the case of Lower Saxony, the following section provides evidence that this is the case. We can therefore assume high internal validity of our estimates for Lower Saxony. For the case of the federal states, while our strategy has a broader applicability and therefore has a tendency higher external validity, administrative scrutiny over election timing is higher. We rely on placebo tests that assess whether our treatment has no effect on pre-treatment outcomes. Effectively, we test whether pre-treatment levels \(E(Y^0_i | D_i = 1) = E(Y^0_i | D_i = 0) \) – and trends in our dependent variable \(E(Y^0_{i,EE} - Y^0_{i,GE} | D_{i,t-1} = 1) = E(Y^0_{i,EE} - Y^0_{i,GE-1} | D_{i,t-1} = 0) \) – are identical in the control and treatment group. As we show, differences are both insignificant and substantially small. We interpret this as an indication that our research design is likely providing causal estimates (Lechner, 2011). For Lower Saxony we show these placebo tests not only for our main effect, but as well for sub-groups, where we might be worried that these show different turnout levels or follow distinctively different turnout trends for unobserved reasons.\(^{11}\) Again, we show that this is not the case. Our estimation for Lower Saxony follows the following functional form:

\[
(\text{turnout}_{14}^{EE} - \text{turnout}_{15}^{GE}) = \beta_0 + \beta_1 D_i + \epsilon_i.
\]

We additionally report results of level regressions as treatment is, as we argue, exogenous.\(^{12}\) The results for both models are reported in Table 1.

A final note concerns the Stable Unit Treatment Value Assumption (Basu and Rubin, 1980). SUTVA has two elements (Imbens and Rubin, 2014, pp. 10-13): first, no interference between units and, second, no hidden variations in treatments which lead to different potential outcomes. Both of these are plausible in our case, especially because we deem general equilibrium effects (e.g. changes in overall party campaign behavior) unlikely. In our case, forms of active treatment are labeled CSOE but contain CSOEs with different degree of competitiveness and voter pivotality in municipal elections. Still, the comparison of group averages is a valid estimator of the causal effect if there are no common causes of treatment and treatment version (VanderWeele and Hernán, 2013). As the distributions of covariates in both treatment and control group are very similar it seems plausible to estimate an ATE.\(^{13}\) Although this exclusion restriction is necessarily a strong assumption which we cannot proof, estimating an ATE is, from a policy perspective, highly desirable: Policy makers would be interested in the average effect of conducting CSOE. In our case, the ATE is defined as CSOE in a municipality with average district size and competitiveness - around 15,000 inhabitants and 2.5 mayoral candidates.

\(^{11}\)See Section 4.2 in this article and Table 4 in the appendix.

\(^{12}\)For this model the functional form is: \(\text{turnout}_{14}^{EE} = \beta_0 + \beta_1 D_i + \epsilon_i \).

\(^{13}\)See balance tests in Table 3 of the Appendix.
In section 5 we generalize our findings to the federal level. Here, the unit of analysis is an election result at the federal state level. Municipal elections are held state-wide and the date is set by the state government – our case of mayoral elections in Lower Saxony in 2014 was an exception to this rule. This means assuming exogeneity of concurrency is less plausible when the unit of analysis are municipal election results at the state level. Hence, our goal is not to estimate another treatment effect on a different level but to check for observable implications of our findings. If CSOE do indeed exert a causal and positive effect on turnout we should expect to see higher turnout in states which hold municipal elections concurrently with EE than in those that do not.

The functional form for our models estimated on a panel of state-level EE election results is

\[
(\text{turnout}_{it}^{EE} - \text{turnout}_{it}^{GE(\text{preceding})}) = \beta_0 + \beta_1 D_{it} + \beta_2 O_{it} + \epsilon_i
\]

(1)

\[
(\text{turnout}_{it}^{EE} - \text{turnout}_{it}^{GE(\text{preceding})}) = \beta_0 + \beta_1 D_{it} + \beta_2 O_{it} + \zeta_i + \tau_t + \epsilon_{it}
\]

(2)

\[
\text{turnout}_{it}^{EE} = \beta_0 + \beta_1 D_{it} + \beta_2 O_{it} + \zeta_i + \tau_t + \epsilon_{it}
\]

The results for these models are reported in Table 2. \(D_{it}\) as before, is the treatment indicator, \(O_{it}\) is a dummy to indicate other concurrent ballots, state elections or referendums and \(\zeta_i\) and \(\tau_t\) are state and year fixed effects respectively.

4 A quasi-experiment in Lower Saxony

The following establishes the effect of concurrent second order elections for the state of Lower Saxony. First of all, we introduce the institutional setting and legislative changes that led to the quasi-experimental setting. We corroborate this by provide tests that help establish that our average treatment effect and our subgroup analysis is likely unbiased. Secondly, we provide evidence that CSOE led to a turnout increase of about 10 percentage points. We finally show that this effect decreases in the size of the municipality and increases in the competitiveness of the local election.

4.1 The case of Lower Saxony

To test the turnout effect of concurrent second-order elections, we draw on the case of concurrency in the 2014 European election in the German state of Lower Saxony. In some municipalities, mayoral elections were held on the same day. The 2014 European election in Lower Saxony is a closest to ideal case to study because the timing of the mayoral elections can be leveraged as a quasi-random treatment condition, that is plausibly exogenous to EE turnout. Here, we introduce the institutional setting and provide evidence for the quasi-randomness of treatment assignment.

The timing of European elections follows a 5-year election cycle. Member states have scope to set the exact date of the election in terms with national electoral traditions between Thursday and Sunday – in Germany elections are always held on a Sunday.
Therefore, in Germany, the 2014 European election was held on a Sunday, 25 May 2014. All voters in Lower Saxony faced the same party lists and had the same influence on the composition of the European Parliament. But on the same date, part of the municipalities in Lower Saxony also elected their mayor. We refer to these municipalities with European and mayoral elections as treatment municipalities’ or ‘CSOE municipalities’ in the following. The selection into treatment was the result of a complex and partially stochastic process.

Figure 3: Timeline of mayoral elections in Lower Saxony. The figure presents one marker for each mayoral election in control (dot) and treatment group (triangle) since 1997. The treatment group (n=201) conducted elections on cycle, i.e. 2001, 2006 and 2014. Selection into this ‘normal’ electoral cycle occurred when the terms of indirectly elected local executives ended in the late 1990s and if mayors did not step back early. The control group (n=213) conducted its last mayoral elections primarily in 2011 (concurrent with local council elections) and 2013 (concurrent with federal elections). Selection into the control group occurred, first, when the terms of indirectly elected local executives ended after 2001 and elections were held ‘off-cycle’ since. Second, some municipalities that first held elections ‘on cycle’ 2001 and 2006 selected into the control group when mayors resigned before their term ended, calling for early elections (n=81). Some control group observations we cannot adequately track over time to determine their type, primarily where changes in administrative boundaries induced changes in the electoral cycle.

Municipalities were until the 1990s headed by a dual leadership, an honorary mayor and a professional local executive. The latter was indirectly elected by local municipal councils for 12 years. In 1996, the social-democratic SPD introduced the direct election of these local executives with 5 year terms, against the opposition of the centre-right CDU.

14Parties in Germany can opt for a country-wide or state-wide closed list of party candidates. Seats are distributed following proportional representation among parties without threshold.
Mayoral elections were to be held concurrently to council elections (Detjen, 2000). Local council and mayoral elections were thus held simultaneously in 2001 and 2006 in most municipalities. In the last regular election 2006, 280 of the 414 municipalities we observe were conducting on-cycle elections. The fact that municipalities were ‘off the cycle’ in 2006 was the consequence of transitional rules that did not force local executives to face reelection in 1996 and 2001 if their original 12 year term was still running (Armbrust, 2007, 60f.), and of exceptional elections due to death, retirement, resignation or changes in administrative boundaries.\(^{15}\) In 2005, now under CDU rule and contested by the SPD-led opposition, the term length of mayors was prolonged to eight years (Armbrust, 2007, 60f.). The explicit political aim of the reform was to desynchronize mayoral and local council elections.\(^{16}\) The legislation became effective for all mayoral elections since 2005.

Accordingly, for the 201 treatment municipalities that held concurrent mayoral elections in 2014, the last mayoral election was regularly held in 2006. Mayoral elections in 2014 could be conducted concurrently wherever the term of the local executive ended within nine months of May 25th (Ipsen, 2011). Whether elections are then actually held concurrently, is under scrutiny of the local administration, but technical rather than political reasons dominate this question: Only 8 out of the 213 municipalities (3.8%) in our control group could by law have voted for their local executive at the European Election day, but did not (for unknown reasons). The municipalities that did not hold mayoral elections concurrently with the 2014 EE were either among the “off-cycle” municipalities in 2006 or municipalities where local executives stepped down or retired between 2006 and 2014.

Altogether, assignment of municipalities to the treatment condition, i.e. holding a concurrent mayoral elections in 2014, depended on remaining time in the term of office of mayors in 1996, when direct elections were introduced, and the individual retirement decisions of in-office mayors in the 1990s and 2000s. These electoral circumstances provide exogenous variation for analyzing the effect of CSOEs on turnout.

4.2 Empirical tests for pre-treatment trends, placebo effects and balance of control and treatment group

While we could think of potential confounders related to both retirement and turnout, such as local competitiveness, tests on covariate balance and pre-treatment trends in our dependent variable indicate very similar distributions in treatment and control group. To substantiate this claim, we first look at descriptive statistics. Figure 4 plots the trend in EE and GE turnout since 1998 for average municipalities with and without CSOE in 2014. As can be seen for general election turnout (upper lines), treatment and control municipalities do not differ in their average turnout. Similarly, the difference

\(^{15}\)De-selection of local executives is not an issue. There are very high political hurdles, only two cases until 2008 are known where this occurred, see http://www.bpb.de/apuz/144111/politisiche-verfasstheit-der-kommunalen-ebene?d=all

\(^{16}\)In 2013, again under SPD rule, this prolongation and desynchronization was reversed under the new government (STK, 2013).
in turnout levels and turnout changes of European Election turnout for treatment and control municipalities is substantially small in the pre-treatment period, though sizable with treatment in 2014. Table 2 in the Appendix reports results of a regression with year and state fixed effects that tests for differences in the pre-treatment trend of CSOE and non-CSOE municipalities - we find substantially small and on the 10%-level insignificant coefficients when testing for different time trends in the 1998-2004 [-0.40(0.49)] and the 2004-2009 [0.72(0.44)] period between both groups.

![Figure 4: Trend of EE and GE turnout of an average CSOE and an average non-CSOE municipality in Lower Saxony. Averages are calculated for 201 CSOE and 213 non-CSOE municipalities. Election results are calculated in 2014 administrative boundaries with data from the Statistical Office of Lower Saxony (http://www.statistik.niedersachsen.de).](image)

Additionally, we checked for the balance of pre-treatment covariates related to mayoral elections between the treatment and control group in 2014. Specifically, we tested whether the distribution of mayoral party and gender of mayor is similar in both groups, whether treatment and control municipalities are equally distributed in the four regions of Lower Saxony, whether treatment correlates with different administrative types of municipalities (rural municipality, city, joint (rural) municipality), whether mayors had to face a runoff election, whether mayors are in a consecutive term and whether mayors stem from municipalities of different size. Concerning all but one of these variables, we find no significant differences between both groups (based on simple two-sided t-tests). Significant differences are present only for the share of mayors in a consecutive term, which is a consequence of the selection process as in the treatment group municipalities following the regular elections cycle without replacements during the term are over-represented. We also show that pre-treatment trends by consecutive term are similar and that treatment effects controlling for consecutive term are substantially unchanged.\(^{17}\)

One final concern relates to the selection process. Potentially, the control group could consist of more competitive municipalities, as selection might be driven by strategic res-

\(^{17}\)See Figure 1 in the appendix.
ignations – and at the same time this competitiveness is a specific treatment condition we want to test for and which determines political participation levels more generally.18

First, the similar turnout trend and levels in the pre-treatment period for European and General Elections do not point in this direction. Second, to directly compare the competitiveness levels of mayoral elections in both groups, we would need to observe standalone mayoral elections in our treatment and control group at the same point in time. As the regular mayoral election cycle had its last election in 2006, we compare our treatment and control observations with data from the 2006 mayoral elections. Importantly, we only observe 97, and thus less than half, of the control municipalities in 2006 – the sample is therefore potentially biased. Nonetheless, it is comforting that when testing for differences in turnout levels, average number of parties competing and the share of mayors facing runoff elections we find no significant differences between both groups. On the 5\% level, the only significant differences lies in the average age of 2006 elected mayors, which is higher in the control group. This indicates that resignations were not driven by strategic considerations, but more likely age-related.19

In the Appendix, we additionally report a series of placebo regressions for all our specifications (average CSOE effect and CSOE effect by local competitiveness and by municipality size), drawing on the difference in turnout for the 2009 EE and 2009 GE (held on 27 September 2009) - the coefficients are all substantially (very) small and insignificant.

Overall, both the political process that led to the decoupling of electoral cycles for local executive elections in Lower Saxony and empirical tests on pre-treatment turnout provide evidence of a unique case: 201 out of 414 municipalities in Lower Saxony were quasi-randomly conducting concurrent mayoral elections (our treatment group), while 213 municipalities were not (our control group). In the following, we leverage this quasi-experimental situation to derive especially robust inferences on the turnout effects of concurrent second order elections.

4.3 Average treatment effect of concurrent mayoral elections on EE election turnout

We estimate the average treatment effect of mayoral elections on EE election turnout rates with two models. The first model implements our proposed DiD design, and has the difference in turnout rates between the European and General Election as the dependent variable. The second model has the turnout rate in the EE as the dependent variable. If treatment is assigned as-if-randomly as we have argued in the previous section, and the common linear trend assumption holds, both models yield in expectation the same estimates of the ATE. However, we expect the DiD model effect estimate to be more precise, as between-municipality variation in turnout due to time-constant factors is differenced out.

18We thank the anonymous reviewer for raising that issue.

19Full results in the Appendix, Table 4.
<table>
<thead>
<tr>
<th></th>
<th>Turnout rate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DiD (EE2014-GE2013)</td>
</tr>
<tr>
<td>Constant</td>
<td>-26.6^*</td>
</tr>
<tr>
<td></td>
<td>(0.4)</td>
</tr>
<tr>
<td>Mayoral election</td>
<td>10.1^*</td>
</tr>
<tr>
<td></td>
<td>(0.6)</td>
</tr>
<tr>
<td>Observations</td>
<td>414</td>
</tr>
<tr>
<td>Adjusted R2</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Note: $^* p<0.01$

Table 1: ATE of concurrent mayoral election on EE turnout. Results of cross-sectional OLS regressions of 2014 turnout trend between the 2014 European Election and the 2013 Federal Election (Model 1) and 2014 European Election turnout (Model 2) on treatment indicator.

Table 1 shows that both models yield practically identical estimates of the concurrency effect. Concurrent mayoral elections boost the turnout rate in the EE election on average by 10 (95% CI: [9,11]) percentage points. While turnout in the EE election drops 27 percentage points below the GE turnout rate in untreated municipalities, the decline is only 17 percentage points in municipalities that held concurrent mayoral elections. As expected, the DiD model realizes some noticeable gains in efficiency and model fit, lending support to the outlined estimation strategy.

4.4 Treatment intensity subgroup analysis

Local elections are notoriously diverse. Some take place in very small rural municipalities, others in large cities. Some are highly contested, politicized or both, with multiple viable candidates jockeying for position. In other races there is only one candidate for the job. As we have argued earlier, these different characteristics of the local contests can best be understood as variation in the treatment intensity. Our central premise is that the concurrency effect increases with the intensity, i.e. with the ‘importance’ of the concurrently held local election. Our theoretical model highlights two central factors that modulate treatment intensity: The size of the local electorate and the competitiveness of the mayoral race.

In the following, we identify twelve treatment intensity subgroups that are defined by district size and competitiveness. We infer the competitiveness of a mayoral election from the candidate set of the local races and the closeness of the electoral results: uncontested, contested and close races. We classify 44 races as uncompetitive because only one candidate stood for election. 134 races were identified as contested races – races in which at least two candidates stood for election, but which were not particularly close. Closeness is operationalized as a difference of less than five percentage points between the vote share of the winning and the second-placed candidate. Judging the electoral
The second criterion for identifying the treatment intensity subgroups is the size of the local unit. We classify treated municipalities according to the size of the electorate, i.e. the number of eligible voters in the mayoral election, into four categories: 54 villages with less than 7,500 eligible voters, 94 small towns with 7,500 to 15,000 voters, 37 towns with 15,000 to 30,000, and 16 cities with more than 30,000 voters.

Our results, presented in Figure 5, show strong support for our theoretical expectations. The concurrency effect, the boost to EE turnout from holding concurrent elections, increases systematically with treatment intensity. Given the size of a municipality, more competitive concurrently-held mayoral elections lead to higher increases in EE turnout due to concurrency. The concurrency effect of uncontested races is much smaller than that in contested races. It ranges from barely noticeable in cities to around

Figure 5: ATE estimates with 95% confidence intervals for treatment intensity subgroups. Subgroups are defined by the size of the municipality and the competitiveness of the mayoral race. Regression output is reported in Table 7 in the Appendix.
6 percentage points in villages. Our interpretation of this finding is that while there is not much at stake when there is only one candidate for the job, voters in small municipalities, unlike voters in larger, more anonymous municipalities, still feel obliged to show up at the polls to fulfill their sense of duty to vote. As soon as there are two candidates for the job, the concurrency effect is substantial in all size groups. While a contested race raises turnout in cities by 7 percentage points, it is even higher in towns (9 percentage points) and in small towns (12 percentage points). In villages, the treatment effect of a contested mayoral race is the highest - turnout is 15 percentage points higher than in untreated municipalities. For close races, races with a margin of less than five percentage points between winner and runner-up, our results point in the direction of an additional increase in the treatment effect. For villages, small towns and towns we find the treatment effect to be 3, 1 and 2.5 percentage points higher than in contested races. However, confidence to conclude a substantial difference in the treatment effect between contested and close races is not supported by the results. There is simply not enough data, and estimation uncertainty is too large, to statistically distinguish the concurrency effect between contested and close races of the same size.

Nevertheless, the observed pattern is remarkably robust, indicating a systematic relationship between characteristics of the local election that modulate treatment intensity and the magnitude of the concurrency effect. These findings do not only corroborate our thesis that concurrency increases turnout, but provide valuable insights into the concurrency effect. The magnitude of the realized turnout increase ultimately depends on treatment intensity, i.e. how “attractive” the local election is that the EE is combined with. For the purposes of policy evaluation, these insights are of great value, such as for predicting the turnout effect of a synchronization of local and EE cycles in other countries or contexts. Based on our results, we predict that a synchronization would have a larger turnout effect in countries with smaller local-level political entities, and where local elections are generally more competitive. Additionally, we would speculate that the concurrency effect also varies with the formal power that local parliaments and governments have. However, we could not test this preposition since in the cases of our investigation there is no variation between municipalities in that respect.

Another noteworthy implication of our findings concerns a possible over-representation of rural voter preferences in EE elections by introducing concurrency (compared to a status-quo with singular elections). If rural municipalities are on average smaller than urban municipalities, and party preferences of rural and urban voters systematically differ, holding local elections together with EE (or any other state-level election) will favor specific parties. This is because treatment intensity, and in turn the realized turnout increase, is higher in smaller rural municipalities. It follows that more additional rural than urban voters will be drawn to the polls. Parties that have a higher vote share among rural voters should then profit from concurrency.
5 Generalization of effects

To assess the external validity of our results we conduct an analysis of the variation in concurrent EEs and local elections between the 16 German states over the last 35 years. For this, we no longer analyze mayoral elections but local council elections which in all the 16 states are held at one point in time across the whole state, usually every five to six years, depending on state regulations. We report differences between states with and without CSOEs of around ten to thirteen percentage points, very much in line with our findings from Lower Saxony. Because states set CSOEs independently our case for identification is not as strong as for Lower Saxony. Consequently, these results should only be regarded as indicative and we avoid to speak of ‘treatment effects’.

![Concurrency of EE, state-level and local elections. Boxes indicate concurrency of EE elections with local elections, state-level elections (light gray) – in Thuringia – or a state-wide referendum (dark gray) – in Bavaria and Berlin – or partial local elections (lighter gray) – in Lower Saxony. (Dashed) horizontal lines indicate mean turnout in a given EE election.](image)

We assembled a data set on state-level election returns for all eight European elections held in Germany since 1979 and all general elections in the same period. Concurrency in general depends on the overlap of European and local electoral cycles (Fig. 6).²¹

²¹West Germany (ten states) participated in EE between 1979 to 1989, after reunification this number rose to 16 states.

²²Term length for elected offices at the local level most often are five years matching the legislative term of the European Parliament which is why once they are held together EP and local elections synchronize, unless election days are explicitly set apart (Fig. 6)
The ‘effect’ of CSOE can easily be ‘seen’ in the case of Baden-Württemberg. This state always saw below-average turnout in EE up until 1994 when, for the first time, it held local elections concurrently with European elections. EE turnout dropped below the national average again in 1999, when the European and local election were held on different dates, and returned to and remained at above-average levels when electoral calendars were resynchronized from 2004 onwards.

In the following, we present our results for three different models. First, we estimate a pooled model on the dataset of all eight EE elections regressing the difference between turnout in the EE and the preceding GE on our treatment variable indicating whether a state held local elections in parallel with the EE (Tab. 2, model 1). The difference in turnout between GE and EE elections is always negative reflecting the fact that European elections generally see lower turnout than general elections. In states that did not hold concurrent elections the difference in turnout between national and European elections is on average -32.3 percentage points. The turnout differential between European and general election is less pronounced in states that held local elections: the estimated average difference between CSOE- and no-CSOE states is 14.7 percentage points.

<table>
<thead>
<tr>
<th></th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>14.7**</td>
<td>10.5**</td>
<td>11.7**</td>
</tr>
<tr>
<td></td>
<td>(1.2)</td>
<td>(2.8)</td>
<td>(3.3)</td>
</tr>
<tr>
<td>Intercept</td>
<td>-32.3**</td>
<td>-24.6**</td>
<td>64.4**</td>
</tr>
<tr>
<td></td>
<td>(0.8)</td>
<td>(1.4)</td>
<td>(1.7)</td>
</tr>
<tr>
<td>State Fixed-Effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Year Fixed-Effects</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R^2</td>
<td>0.477</td>
<td>0.845</td>
<td>0.905</td>
</tr>
<tr>
<td>N</td>
<td>110</td>
<td>110</td>
<td>110</td>
</tr>
</tbody>
</table>

Table 2: Regression models on a panel of state-level EE results with the difference in turnout in a EE and the preceding GE as dependent variable (1) and concurrent local elections and concurrent other elections or referendums as independent variable, with (2) the same specification but with additional state and year fixed effects, and with (3) only EE turnout as the dependent variable and the aforementioned independent variables and fixed effects – all with clustered standard errors. All models include a dummy variable to indicate concurrent state elections or referendums (only three cases) which is not reported in the table.

Second, by adding state and time fixed-effects to the specification of model 1 we estimate the change in turnout resulting in the move from a stand-alone EE to concurrent European and local elections (Tab. 2, model 2). The average turnout increase in states that introduced CSOE is 11.7 percentage points. Third, we extend the classical predictions by adding state fixed effects which are estimated via the within-transformation. The intercept displayed is the average value of the fixed effects and as such does not lend itself to such a straightforward interpretation.
Differences-in-differences set-up to multiple time-periods by regressing EE turnout on our local elections dummy, another elections or referendums dummy as well as state and year fixed effects (Tab. 2, model 3).

Figure 7: Difference-in-differences estimates for the turnout effect of concurrent local elections by European Election. Difference between turnout in European election (EE) and preceding general election (GE) on y-axis. Election-specific difference-in-difference estimates – all significant at the .1% level – are printed in the top part of the graph.

These estimates are consistently higher than our estimates obtained from the data from Lower Saxony described above. Although the argument for exogeneity of treatment is less strong for state-level data we believe it is unlikely that these differences are indicative of strong bias. Note that if there is any systematic relationship between turnout levels and CSOE it is that states with lower turnout should be more likely to opt for concurrency than states with higher turnout. Indeed, it is former East German states that have consistently synced local with European elections and that also have consistently lower turnout levels than former West German states. Note also that in most German states, elections to the municipal council and to the mayoral office, if it is an elected office, are held concurrently and therefore see higher turnout than stand-alone mayoral elections which translates into a stronger CSOE effect.

To assess the heterogeneity of our results over time we also estimated separate ‘Difference-in-differences’ models. We again use the difference in turnout to the preceding GE for each EE and now obtain the election-specific average difference between CSOE- and no-CSOE states. For each and every European election, average turnout in states with concurrent local elections is consistently higher than in states without, with

\footnote{In some states the mayor is elected by the municipal council.}
average differences varying from 8 to 20 percentage points (Fig. 7).

Finally, the robustness in our results is supported by placebo tests (presented in the appendix, table 9) that show that CSOE-states are unlikely to be on a differing turnout trend compared to non-CSOE states and that shifting the treatment period forward does not yield substantially or statistically significant results. Last but not least, we get similar CSOE effects when exploiting the geographic discontinuity of concurrency for municipalities at state borders (Table 10 and figure 2 in the appendix), where our identifying assumptions are more likely to be met. Overall, this provides some evidence that the estimates we present here likely approximate treatment effects of concurrent local elections at the state level.

In this section we have tried to generalize our results to the full population of European elections in Germany on the basis of state-level returns. The fact that state governments set the term lengths and dates for municipal elections gives rise to endogeneity concerns. Nevertheless, the results presented here suggest that a CSOE effect is at play, too, which may even be higher when full municipal elections are held concurrently with EE – although we are unable to quantify it exactly.

6 Discussion

6.1 Are CSOE more than any of their parts?

The turnout effect of a concurrent local election is substantial – EE turnout increases by around 10 percentage points. While this seems impressive at first sight, there is an alternative explanation which would undermine the substantive relevance of this finding. If turnout in a singular local election were generally higher than in EE elections, a turnout increase in concurrent EEs would mechanically follow, given that voters rarely cast blank ballots.

The more pertinent question is therefore whether CSOE turnout increases beyond the counter-factual turnout levels obtained in any singular SOE. To answer this question, we would ideally report average turnout levels for counter-factual stand-alone mayoral elections for the same localities at the same point in time. Unfortunately, there are no municipalities that conducted only mayoral, but no EE elections, since EEs were conducted in all municipalities. We therefore cannot estimate turnout for singular mayoral elections at the same point in time.

We use stand-alone mayoral run-off elections in June 2014 and October 2013 as

26 There are only two exceptions where a single CSOE state experienced turnout lower than any non-CSOE state: Firstly, in 2004 Thuringia did not hold concurrent local elections but concurrent state elections which is why it experienced considerably higher turnout than one would expect from a state without CSOE. Secondly, Hamburg which in 2014 held CSOE for the first time still saw less than average turnout when compared to other states in 2014. Note however that the state did see an increase in turnout vis-à-vis the prior European election 2009 and that Hamburg is one of the three German city states which consistently obtain lower turnout than larger states. One reasons for this is that local elections are less salient as districts are merely administrative units with less autonomy than municipalities.
Table 3: Average turnout in singular mayoral (ME) run-off and European elections (EE) in 2013 and 2014 as well as turnout in treatment and control group 2014. Source: Own calculations, data from Election Officer of Lower Saxony (http://www.landeswahlleiter.niedersachsen.de). Mayoral elections in 2013 are all singular run-off elections on 06.10.2013; mayoral elections in 2014 are all singular run-off elections on 15.06.2014; EE in 2014 are all 2014 EE with/without mayoral elections on 25.05.2014 in Lower Saxony

<table>
<thead>
<tr>
<th>Election</th>
<th>Average municipality turnout</th>
<th>Number of municipalities</th>
<th>Standard deviation</th>
<th>Min</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013 singular ME run-off</td>
<td>47.14%</td>
<td>9</td>
<td>5.65</td>
<td>38.20%</td>
<td>56.00%</td>
</tr>
<tr>
<td>2014 singular ME run-off</td>
<td>46.34%</td>
<td>46</td>
<td>9.57</td>
<td>27.59%</td>
<td>69.38%</td>
</tr>
<tr>
<td>2014 singular EE</td>
<td>45.66%</td>
<td>215</td>
<td>5.03</td>
<td>32.68%</td>
<td>62.82%</td>
</tr>
<tr>
<td>2014 concurrent EE and ME</td>
<td>55.40%</td>
<td>201</td>
<td>6.58</td>
<td>39.79%</td>
<td>76.95%</td>
</tr>
</tbody>
</table>

In the 2013 and 2014 singular mayoral run-off elections, average municipality turnout was 46.3 and 47.1 percent (Table 3). This is slightly higher than turnout in an average municipality that held singular European Elections (45.7 percent). An average CSOE municipality experienced turnout of about 55.4 percent, substantially larger than both singular EE and singular mayoral run-off elections. Keeping in mind that the samples of municipalities and election dates differ, and that we use run-off elections as a proxy for first-round elections, we do not interpret these findings as definitive evidence. Still, we are confident in concluding that turnout levels in CSOEs are indeed 'higher than in any of their parts.' Concurrent second-order elections not only push participation rates to that of the highest counter-factual singular election, they realize a ‘net gain’ in participation.

6.2 Who are the additional voters?

The natural follow-up question then is who these additional voters are. Are these voters which are primarily interested in the additional election that the SOE is combined with (voter type D in Figure 1), or are these voters who only turn out in concurrent elections (voter type C)? The former would indicate that CSOEs increase turnout by combining different arena-specific sub-electorates, the latter that CSOEs motivate ‘completely new’ voters otherwise not participating in second-order elections.

27 Since the vast majority of our control group municipalities held their last mayoral elections concurrently with general elections on September 22nd, 2013 or concurrent local council elections on September 11th, 2011, we cannot use the last mayoral election either.

28 Whilst runoff elections are advocated as natural experiment in comparison with first-round elections (Indridason, 2008), average turnout in mayoral runoff elections is not directly comparable to first-round turnout. Although runoff elections might be more competitive on average, this must not be the case if the margin between first-round winner and runner-up is relatively large and who wins can be predicted with large certainty by citizens. Given figures from the German federal state Hesse, bordering Lower Saxony, where an average difference of about 3.5 percentage points between mayoral first- and second-round elections is observed for the period 1993-2012 (Garmann, 2014), and the average difference in Bavaria, where average turnout differs by 5 percentage points for the period 1946-2009 (Arnold, 2015), bias of the size of our treatment effect seems unlikely.
This important question can only be answered with individual-level data. Unfortunately, available voter surveys are far from ideal, as they mostly focus on only one electoral arena, and do not address local contests and politics. The best survey data at our disposal is a voter survey on the 2014 EE in Lower Saxony by the Making Electoral Democracy Work project (Blais, 2010). We test an observable implication that might give some insight into the motivations of the additional voters. If the concurrency effect is driven by voters of type D, i.e. voters that would vote in a singular mayoral, but not in a singular EE, we would expect voters that are more interested in local politics to be more likely to turn out in EEs, if these are held concurrently with local elections. For lack of a better measure, we proxy interest in local politics with the degree of local attachment.\footnote{Respondents are asked to indicate the strength of their local attachment by answering the question ‘How strongly attached to you feel to: your city/municipality?’ on an 11-point scale from 0 to 10 with higher values indicating stronger attachment. We use this question as respondents were not asked about their interest or participation in local elections.} The treatment is whether the 2014 EE was held concurrently with a mayoral election in the respondent’s home municipality.

Column 1 in Table 4 shows that average local attachment scores are balanced between the control and treatment group. Column 2 indicates that the general treatment effect replicates in the survey data. Column 3 shows that treated respondents with high local attachment are eight percentage points more likely to report EE turnout than their untreated counterparts.

<table>
<thead>
<tr>
<th></th>
<th>(1) Local Attachment</th>
<th>(2) Turnout</th>
<th>(3) Voted EE & Locally Attached</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO CSOE</td>
<td>7.5</td>
<td>0.68</td>
<td>0.55</td>
</tr>
<tr>
<td>CSOE</td>
<td>0.1 (0.57)</td>
<td>0.76</td>
<td>0.62</td>
</tr>
<tr>
<td>Differences</td>
<td>0.1</td>
<td>0.08 (0.01)</td>
<td>0.08 (0.04)</td>
</tr>
<tr>
<td>N</td>
<td>969</td>
<td>814</td>
<td>790</td>
</tr>
</tbody>
</table>

Table 4: Voter survey data from Lower Saxony. Comparison of mean local attachment (column 1), turnout between municipalities that held concurrent mayoral elections and those that did not (2), and the share of voters with a local attachment (3). P-Values for difference-in-means (column 1) and χ^2-tests respectively (columns 2 and 3) in parentheses.

Keeping the limited ability to identify different types of voters based on the available survey data in mind, our tentative conclusion is that there is a substantial amount of voters primarily interested in the local contest which turn out in EE because of the concurrency. It is less clear how we could identify type C voters, voters who only turn out in concurrent elections. Which types of voters are additionally drawn to the polls remains an important, but challenging question for future research endeavors.

7 Conclusion

Second-order elections see markedly lower participation rates than first-order, i.e. general national, elections. In many second-order elections, the costs of voting surpass its benefits for more than half of the electorate, which is worrying for the legitimacy of
This paper investigates how the combined holding of multiple second-order elections can increase turnout rates.

Theoretically, in concurrent elections voters incur fixed participation costs only once, while they can reap potential benefits multiple times. As in concurrent elections the benefits from participation stem from multiple electoral arenas, singular factors that induce participation such as perceptions of pivotality or electoral closeness can now push voters above their participation threshold for only one election, while leading them to vote in the other electoral arena as well.

We estimate the causal effect of combining two second-order elections on turnout in a quasi-experimental design. In the German State of Lower Saxony, some municipalities held mayoral races concurrently with the 2014 European Parliamentary election (EE). Mayoral election timing was plausibly exogenous to counterfactual turnout levels in the municipalities. We show that concurrent mayoral elections increase turnout by over 10 percentage points (i.e. more than 20%). Leveraging variation in treatment intensity, we show that the effect of concurrent second-order elections (CSOEs) is highest in competitive races in small municipalities (up to 20 percentage points) and close to zero in uncompetitive races in large cities. Analyzing state-level turnout in eight EEs held in Germany, we demonstrate large differences in turnout rates between states with concurrent municipal elections and those that held singular EEs, thereby establishing the external validity of our findings.

Our findings, which are robust to the use of different specifications and subsamples, have direct relevance for the ongoing political debate on policy measures against, and consequences of, low turnout. Our results, in combination with evidence provided by Fauvelle-Aymar and François (2015) on French regional elections and Schmid (2015) on cantonal elections and concurrent referendums in Switzerland indicate that CSOEs should ‘work’ in a wide variety of contexts. Combining multiple SOEs is a simple, yet very effective policy tool to increase turnout rates. Taking our results literally, more than 80% of the much noted on increase in EE turnout in Germany between 2009 and 2014 (from 43.3 to 48.1 percent) was due to the introduction of concurrency in German states (3.9 percentage points). Without concurrency in any state, counter-factual 2014 EE turnout in Germany would have been at only 39.0 percent instead of the actual 48.1 percent.

Most importantly, CSOEs do not simply push up turnout to the turnout level of the most attractive SOE - they are ‘more than any of their parts’. CSOEs increase turnout beyond the level of any of the two elections. Theory and suggestive evidence from survey data leads us to suggest that this net increase in turnout is primarily due to a combination of sub-electorates that only turn out in one of the elections. In our

30The counter-factual turnout rate is calculated by subtracting the estimated concurrency effect in Table 2, Model 1 from observed turnout in states with concurrent elections in 2014 and thus recalculating counter-factual EE turnout without CSOEs. Similar calculation (based on Table 2, Model 2) leads to the estimation of additional voters in the German states introducing concurrent local elections (Hamburg, North-Rhine Westphalia, Brandenburg) or a concurrent referendum (Berlin). Additional voters in Lower Saxony were calculated drawing on Table 1, Model 1, and the share of voters in municipalities with concurrent elections (46.9%).
case, this would imply that many of the additional EE voters are not interested in the EE, but only participate because there is a local election on the same day.

This indicates that there is a trade-off involved. While high turnout is desirable as the characteristics of voters resemble the general population more closely when turnout increases (Lijphart, 1997; Singh, 2015), the mixing of different subsections of the population that are not necessarily interested in one of the elections might lower the quality of vote choices. For instance, Börgers (2004) and Krishna and Morgan (2011) argue theoretically that voluntary participation Pareto-dominates compulsory voting. Hodler, Luechinger, and Stutzer (2015) provide evidence that the introduction of postal voting in Switzerland (i.e. lower costs) is associated with on average less knowledgeable voters and lower welfare expenditure because uniformed voters are more likely to be swayed by special interests. This is in line with survey evidence from Switzerland on concurrent referendums, where, while turnout increases, the average level of political knowledge of voters decreases (Schmid, 2015). However, Schmid also reports an increase in information search behavior of these new voters. Although this might not offset the knowledge-effect in the short-term, exposure and engagement with the political system should increase knowledge over time (Wong, 2000).

The question on whether concurrent elections (and lower voting costs in general) decrease the average quality of vote choice has to be further investigated, ideally with panel survey data covering interest and participation in concurrent second-order elections. Future research should also focus on the differences in the preference distributions between the sub-electorates that are drawn to the polls in concurrent elections. This would help us to better understand the implications of holding concurrent elections for electoral outcomes.
References

